IMPROVING THE GLYCOPROTEOMIC WORKFLOW FOR THE ANALYSIS OF *I*/LINKED GLYCANS BY CE/LIF

DENISA SMOLKOVA^{1,2}, JANETTE BOBALOVA¹, DANA STROUHALOVA¹, RICHARD CMELIK¹, JANA LAVICKA¹ ¹INSTITUTE OF ANALYTICAL CHEMISTRY OF THE CZECH ACADEMY OF SCIENCES, BRNO, CZECH REPUBLIC ²DEPARTMENT OF CHEMISTRY, MASARYK UNIVERSITY, BRNO, CZECH REPUBLIC

-OCH₃

-NHNH₂

ő

 NH_2NH_2 CH₃OH, reflux

NaQ

0

Na[†]Ó

INTRODUCTION

iac M brno

> Protein glycosylation is involved in the control of many important biological processes and structural changes in *N*-linked glycans are associated with various types of diseases. High-throughput profiling of *N*-glycans often contains a derivatization step in order to increase detection sensitivity by optical or mass spectrometric methods. In this work, we report the effect of different proteomic protocols varying in enzyme or digestion procedures followed by derivatization by Cascade Blue hydrazide (8-(2hydrazino-2-oxoethoxy)pyrene-1,3,6-trisulfonic acid trisodium salt, CBH) on the glycan detection in CE/LIF analysis. CBH represents a more reactive analog of 8-aminopyrene-1,3,6-trisulfonic acid trisodium salt (APTS) widely used for glycan labeling before CE analysis.

OPTIMIZATION OF PROTEOMIC PROTOCOLS

LABELING

Glycans released from RNase B + Cascade blue hydrazide label Optimized labeling conditions: 1:10 molar ratio, 7.5 % acetic acid, 50 °C, 20 h, no reduction agent

MALDI/MS ANALYSIS

MALDI/MS spectra of intact RNase B

Cascade Blue hydrazide was synthesized from trisodium 8-hydroxypyrene-1,3,6-trisulfonate (pyranine) using a two-step protocol outlined in the scheme. Pyranine was treated with ethyl bromoacetate in the presence of a base to afford *O*-methoxycarbonylmethyl derivative. The obtained ester was then converted to hydrazide via addition of hydrazine in methanol to yield the desired product.

Man5

Man6

after individual deglycosylation conditions:

- A) native protein
- B) thermally denatured protein
- C) thermally denatured protein, reduced by DTT
- D) thermally denatured protein, reduced by DTT, and alkylated by IAA

MALDI/MS

- Individual RNase B samples (1mg.ml⁻¹) were purified using C18 Zip Tips before MALDI/MS analysis
- MS measurements were carried out using a 5800 Proteomics Analyzer (AB Sciex)
- Intact protein measurements were performed in the positive linear (+LIN) mode with SA as a matrix
- The reproducibility was proven using five independent MALDI-TOF MS measurements for each sample

4-hydroxybenzylalcohol quantification = *labeling yield: 10.6%*

-A (native protein)

-B (thermally denatured protein)

-C (thermally denatured protein, reduced by DTT)

-D (thermally denatured protein, reduced by DTT, and alkylated by IAA)

CE/LIF

2.0

1.7

1.4

intensity 1.1

0.8

0.5

0.2

-0.1

Sciex P/ACE MDQ Plus CE instrument

Man7

Man8

Man9

11

Time [min]

CE: 50 μm ID NCHO-coated capillary (48.5/38.5 cm), carbohydrate separation gel buffer (Sciex), -25 kV

13

12

LIF: 405 nm laser/425 nm long pass filter

- This work compares the efficiency of glycan labeling by reductive amination (APTS) and hydrazone formation (CBH) chemistries
 - CBH labeling provides: a) single product formation, b) higher labeling yield, c)

LC/UV

Agilent 1100 Series HPLC - Poroshell 120 SB-AQ (150 \times 2.1 mm; 2.7 μ m), 35 °C, 0.2 mL/min, gradient elution: 10%-70% acetonitrile in water/10 min, UV detection at 280 nm.

- no competitive reaction
- N-linked glycans were released from RNase B after individual deglycosylation protocols (denaturation, reduction, or alkylation steps)
 - the most effective approach: the protocol based on thermal denaturation (B) and DTT reduction (C)
- The effective hydrazone formation technique was applied for labeling of released *N*linked glycans followed by CE/LIF analysis
- In the next step, the research will focus on the use of the optimized glycoproteomic protocol at different concentrations of glycoproteins and in-gel enzymatic treatment

Financial support from the Grant Agency of the Czech Republic (22-00236S), and the institutional research plan (RVO: 68081715) is greatly acknowledged.